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Abstract Three-dimensional laminar forced convective heat transfer in ribbed square channels is
investigated. In these channels, transverse and angled ribs are placed on one or two of the walls to
form a repetitive geometry. After a short distance from the entrance, also the flow and the
dimensionless thermal fields repeat themselves from module to module allowing the assumption of
periodic, or anti-periodic, conditions at the inlet/outlet sections of the calculation cell. Prescribed
temperature boundary conditions are assumed at all solid walls, including the ribs. Pressure drop
and heat transfer characteristics are compared for rib angles ranging from 908 (transverse ribs) to
458, and different values of the Reynolds number. The influence of rib geometries is investigated
below and above the onset of the self-sustained flow oscillations that precede the transition to
turbulence. Numerical simulations are carried out employing an equal order finite-element
procedure based on a projection algorithm.
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Nomenclature
a ¼ independent variable
A ¼ amplitude
f ¼ friction factor
h ¼ average convection coefficient
H ¼ height of the channel
k ¼ thermal conductivity
L ¼ length
_m ¼ mass flow rate
n ¼ outward oriented normal to the

external surface
Nu ¼ overall Nusselt number
p ¼ pressure
~p ¼ periodic component of pressure
q ¼ heat flow rate
Pr ¼ Prandtl number
Re ¼ Reynolds number
S ¼ surface
St ¼ Strouhal number
t ¼ temperature
T ¼ dimensionless temperature

u,v,w ¼ velocity components in the (x,y,z )
directions

v ¼ velocity vector
W ¼ width of the channel
x,y,z ¼ Cartesian coordinates
a ¼ overall pressure gradient in the flow

direction

Greek
1 ¼ goodness factor
m ¼ dynamic viscosity
q ¼ time
Q ¼ period
r ¼ density

Subscripts
b ¼ bulk
Nu ¼ associated with the Nusselt number
w ¼ wall
0 ¼ associated with the smooth duct
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Introduction
Heat transfer enhancement can be achieved by employing surface
modifications that generate secondary flows and/or destabilise the main
flow. The resulting vortices move the fluid from the walls to the centre,
reducing the thickness of the boundary layers. This is the case, for example,
with angled and transverse ribs utilised to augment heat transfer in channels.
Technical applications include internal cooling of the first rows of guiding
vanes and blades in gas turbines. In the literature many data are available for
channels with transverse ribs, e.g. see (Webb et al., 1971; Webb and
Ramadhyani et al., 1985), Berner et al. (1984), Kelkar and Patankar (1987),
Cheung and Huang (1991), Lopez et al. (1996) and Müller and Fiebig (1997). On
the contrary, the effect of angled ribs has been taken into account only recently,
e.g. see (Kukreja et al., 1993; Kukreja and Lau, 1998), Sundén (1999) and Nonino
and Comini (2000).

In this paper, the three-dimensional laminar forced convective heat transfer
in ribbed square channels is investigated. The rib height is assumed to be 1/10
of the channel height. Numerical simulations are carried out employing a finite
element procedure based on the equal order projection algorithm illustrated by
(Nonino and Comini, 1997; Nonino et al., 1997). This procedure shares many
features with the well-known SIMPLE/SIMPLER algorithms, described by
Patankar (1980). At each time step, a tentative pressure field is estimated first
from a pressure-Poisson equation obtained by enforcing continuity on the
pseudovelocities, i.e. on the velocities that would prevail in the absence of the
pressure field. Then, the momentum equations are solved in sequence for
velocity components, and continuity is enforced again to find corrections that
modify both the velocity field and the estimated pressure field. Finally, the
energy equation is solved before moving to the next step. In the finite element
solution, equal order interpolation can be utilized for velocity and pressure
variables because pressure equations are derived from continuous, rather than
discretized, approximations.

In ribbed channels, transverse and angled ribs are placed on one wall or on
two facing walls, to form a repetitive geometry. In this way, after a short
distance from the entrance, also the flow and the dimensionless thermal fields
repeat themselves from module to module allowing the assumption of periodic,
or anti-periodic, conditions at the inlet/outlet sections of the calculation cell. As
pointed out by Nonino and Comini (1998), periodic conditions arise when the
ribs are placed on one channel wall, while anti-periodic conditions arise when
the ribs are placed on both walls. Prescribed temperature boundary conditions
are assumed at all solid walls, including the ribs.

Pressure drop and heat transfer characteristics in the ribbed channels are
compared for different angles ranging from 908 (transverse ribs) to 458. In all
the situations investigated, pressure losses are much higher than the ones
corresponding to the smooth channel. On the contrary, at low Reynolds
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numbers a significant improvement of average heat transfer rates can be
obtained only for angled ribs in anti-periodic configurations. This improvement
can be explained by the formation of two counter-rotating longitudinal vortices
that move the fluid from the walls to the centre. In the periodic case with angled
ribs, only one longitudinal vortex appears and no mixing occurs between near
wall and centre flows. With transverse ribs, the vortices are also transversal
and the mixing effect is not much effective, at least at low values of the
Reynolds number. On the other hand, the situation changes at Reynolds
numbers above a critical value that corresponds to the onset of the self-
sustained oscillations preceding the transition to turbulence. In fact, when the
flow and temperature fields become unsteady, a new convective heat transfer
mechanism appears: the periodic washing of the upper and lower channel walls
by travelling transverse vortices. These vortices move the fluid particles from
near the walls to the core and downstream, significantly enhancing the energy
transport.

Statement of the problem
The three-dimensional geometry considered is made up of the repetition of
identical modules in a square channel. The bottom, or the bottom and the top
walls of the channel are roughened with vertical ribs, as illustrated in Figures
1(a) and 1(b), respectively. The perfectly conductive ribs are at the same
temperature of the wall, have a negligible thickness and are characterised by a
height equal to 1/10 of the channel height H. The width W of the channel and
the length L of a module are both equal to H. The rib configurations of interest

Figure 1.
Ribbed square channels:
(a) periodic boundaries
with one-sided ribs, (b)
anti-periodic boundaries
with staggered ribs, (c)
transverse, 908 angled
ribs, (d) 608 angled ribs
and (e) 458 angled ribs
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are transverse ribs (908), 608 and 458 angled ribs, as shown in Figure 1(c,d,e),
respectively.

After a short distance from the entrance of the channel, the flow and thermal
fields repeat themselves from module to module, attaining a fully developed
character. The repetitive flow and thermal fields allow the limitation of the
analysis to a single module. In fact, it can be easily inferred that the
distributions of velocity components and dimensionless temperatures at
periodic boundaries, such as S1 and S2 in Figure 1(a), can be expressed as a
periodic function. When the ribs are staggered, it is still possible to reduce the
computational domain to a single module enclosed by anti-periodic boundaries,
such as S1 and S3 in Figure 1(b). In this case, however, the relationships
between velocity components and temperatures distributions on S1 and S3

must be expressed as anti-periodic functions.

The flow and temperature fields
Assuming the thermophysical properties of the fluid to be constant and the
flow to be laminar, the governing equations are the standard Navier-Stokes,
continuity and energy equations. They can be written in as

r
›v

›q
þ rv·7v ¼ m72v 2 7p ð1Þ

7·v ¼ 0 ð2Þ

In the above equations, v is the velocity vector, q is the time, r is the density, m
is the dynamic viscosity, and p is the deviation from the hydrostatic pressure.
In the absence of volumetric heating and neglecting the effects of viscous
dissipation, the energy equation can be written as

rc
›t

›q
þ rcv·7t ¼ k72t ð3Þ

where c is the specific heat and k is the thermal conductivity.
In a periodic fully developed flow, the pressure p can be expressed as the

sum of a linear term, accounting for the overall pressure gradient, and a
residual term that behaves in a periodic manner. Thus, with reference to the
situation illustrated in Figure 1, we have

p ¼ 2ax þ ~p ð4Þ

where a is a constant representing the overall pressure gradient in the flow
direction x and ~p is the periodic component. The symmetric periodicity of ~p
between the boundaries S1 and S2 leads to the condition

~pðL; y; zÞ ¼ ~pð0; y; zÞ ð5Þ
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while the antisymmetric periodicity between the boundaries S1 and S3 yields
the condition

~pðL; y;H 2 zÞ ¼ ~pð0; y; zÞ ð6Þ

where z is the distance from the bottom boundary measured in the vertical
direction and H is the height of the channel.

Appropriate conditions must be specified at wall and at periodic boundaries.
At wall boundaries, the no-slip condition holds good

u ¼ v ¼ w ¼ 0 ð7Þ

The symmetric periodicity between the boundaries S1 and S2 leads to the
conditions

uðL; y; zÞ ¼ uð0; y; zÞ

vðL; y; zÞ ¼ vð0; y; zÞ

wðL; y; zÞ ¼ wð0; y; zÞ

ð8Þ

while the anti-symmetric periodicity between the boundaries S1 and S3 leads to
the conditions

uðL; y;H 2 zÞ ¼ uð0; y; zÞ

vðL; y;H 2 zÞ ¼ vð0; y; zÞ

wðL; y;H 2 zÞ ¼ wð0; y; zÞ

ð9Þ

Conditions (8) and (9) do not involve the specification of any inflow velocities.
Thus the pressure gradient a must be adjusted iteratively, as described by
Nonino and Comini (1998), to obtain the desired value of the average velocity

�u ¼
1

S

Z
S

udS ð10Þ

on the cross-section S.
The behaviour of the flow is determined by the Reynolds number

Re ¼
r �uH

m
¼

_m

mH
ð11Þ

and is be characterized by the friction factor

f ¼
aH

2r �u2
ð12Þ

which is directly related to the overall pressure gradient.
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The wall boundary condition utilized for temperature is

t ¼ tw ¼ const ð13Þ

In such a case, the distribution of the dimensionless temperature

T ¼
t 2 tw

tb 2 tw
ð14Þ

identically repeats itself from module to module, as pointed out by Kelkar and
Patankar (1987), and Nonino and Comini (1998).

In the above equation, tb is the bulk temperature defined as

tb ¼

Z
S 0

jv·njtdSZ
S 0

jv·njdS

ð15Þ

where S 0 is the area of the surface parallel to the inflow/outflow boundaries,
and n is the unit vector normal to the surface. Thus, the symmetric periodicity
of T between the boundaries S1 and S2 leads to the condition

tðL; y; zÞ2 tw

tbðLÞ2 tw
¼

tð0; y; zÞ2 tw

tbð0Þ2 tw
ð16Þ

which can be written in the form

tðL; y; zÞ ¼ 1 þ
tbðLÞ2 tbð0Þ

tbð0Þ2 tw

� �
tð0; y; zÞ2

tbðLÞ2 tbð0Þ

tbð0Þ2 tw
tw ð17Þ

Similarly, the antisymmetric periodicity between the boundaries S1 and S3

leads to the condition

tðL; y;H 2 zÞ2 tw

tbðLÞ2 tw
¼

tð0; y; zÞ2 tw

tbð0Þ2 tw
ð18Þ

which can be written in the form

tðL;H 2 y; zÞ ¼ 1 þ
tbðLÞ2 tbð0Þ

tbð0Þ2 tw

� �
tð0; y; zÞ2

tbðLÞ2 tbð0Þ

tbð0Þ2 tw
tw ð19Þ

Equations (17) and (19) contain two unknown quantities: the bulk temperature
at inflow tb(0) and the difference between the bulk temperatures at outflow and
inflow. However, in the solution process we can first impose the value of the
difference in the bulk temperatures, and then we can iterate until convergence
is reached for a value of tb(0) which verifies the periodicity condition.
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The overall Nusselt number is defined as

Nu ¼
hH

k
ð20Þ

where

h ¼
q

S0 Dt
ð21Þ

is the overall heat transfer coefficient, S0 is the heat transfer surface pertaining
to the corresponding module of a smooth channel, q is the total heat flow rate
and

Dt ¼ Dtml ¼
½tw 2 tbðLÞ�2 ½tw 2 tbð0Þ�

ln{½tw 2 tbðLÞ�=½tw 2 tbð0Þ�}
ð22Þ

is the logarithmic mean temperature difference.

Numerical solution
In the procedure adopted, the momentum, continuity and energy equations are
solved by the equal-order, velocity-pressure algorithm for incompressible
thermal flows described by Nonino and Comini (1997). As already pointed out,
the velocity-pressure coupling is handled by a methodology, which shares
many features with the SIMPLE/SIMPLER algorithm illustrated by Patankar
(1980). At each new time step (n+1) the pseudovelocity field (û; v̂; ŵ), which can
be obtained by neglecting the pressure gradients in the momentum equations,
is computed from the velocity field (u n, v n, w n), which prevails at the end of the
old time step (n ). Then, by enforcing continuity on the pseudo-velocity field, a
tentative pressure p* is estimated, and the momentum equations are solved for
the tentative velocity field (u*, v*, w*). Afterwards, continuity is enforced again
to find pressure corrections p0 which yield pnþ1 ¼ p* þ p0: Pressure corrections
are also used to find the velocity corrections (u0, v0, w0) that bprojectc (u*, v*, w*)
onto the divergence-free space ðunþ1 ¼ u* þ u0; vnþ1 ¼ v* þ v0; wnþ1 ¼
w* þ w0Þ: Once the velocity field (u n+1, v n+1, w n+1) has been found, the energy
equation can be solved before moving to the next step.

As illustrated by Comini et al. (1994), the momentum and energy equations
are particular versions of the transport equation for a generic dependent
variable a. This equation can be written in the time-discretized form

g
anþ1 2 an

Dq
þ gvn·½t7anþ1 þ ð1 2 tÞ7an�

¼ G½tG7
2anþ1 þ ð1 2 tGÞ7

2an� þ _s ð23Þ

The properties g and G, and the volumetric source rate _s can be easily identified
by inspection of the appropriate original equations. The weighting factors tv
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and tG, both in the range from 0 to 1, allow the selection of different time-
integration schemes. Finally, it must be pointed out that the pressure equation
and the pressure correction equation are particular versions of the Poisson
equation, which can be obtained from equation (23) by assuming g ¼ 0 and
tG ¼ G ¼ 1:

The space discretization of the general transport equation is based on the
Galerkin method. In fact, for each node i we obtain an integral form by
weighting and integrating equation (23) over the computational domain. The
application of Green’s theorem to the diffusion terms at the right hand side of
equation (23) yields the weak forms, and allows the introduction of Neumann
boundary conditions.

As usual, the unknown functions are approximated throughout the solution
domain by the expansions

a ¼
X

Njaj ¼ Na ð23Þ

where aj stand for the nodal values, while Nj are interpolating functions. In the
Bubnov-Galerkin method utilized here, Nj coincide with the weighting
functions employed in the weak forms. Therefore, no upwinding techniques are
employed.

Substituting equation (24) into the appropriate weak forms, we arrive at
systems of space discretized equations that can be written as

Ha ¼ g ð24Þ

where a is the vector of nodal values, H is the effective stiffness matrix,
accounting for all homogeneous contributions, and g is the effective load
vector, accounting for all nonhomogeneous contributions. Finally, the
boundary conditions of the first kind at the walls are implemented in the
usual way, e.g. see Comini et al. (1994). The periodic boundary conditions are
introduced as illustrated in detail by Nonino and Comini (1998). In particular it
must be noticed that, with reference to the corresponding points on the inflow
(i ) and outflow (o ) boundaries, all the periodic boundary conditions above
illustrated can be expressed in the general form

ao ¼ Bai þ D ð25Þ

where the values of B and D can be easily inferred from the physical boundary
conditions

. (5) and (6) for the periodic components of pressure;

. (8) and (9) for the velocity components;

. (17) and (19) for the fluid temperature.

Convective heat
transfer in ribbed
square channels

617



Accordingly, the matrix H and the right hand side vector g in equation (24) are
modified to take into account equation (25).

At each time step the systems of linear equations, arising from the
discretization process, were solved by means of iterative algorithms. The
conjugate gradient squared (CGS) method has been used to solve the
discretized momentum and energy equations, while the conjugate residual (CR)
method has been used to solve the symmetric systems obtained from the
discretization of the Poisson equations. In both cases, preconditioned matrices
have been obtained from an incomplete LU decomposition (ILU).

Results
The calculations presented in the following concern steady- and unsteady-state
solutions that have been obtained from pseudo-transient, or transient,
simulations, respectively. In the simulations we used structured grids of eight-
node trilinear (brick) elements, with finer grid spacings near the walls and near
the inflow and outflow sections. Grid independence was established on the
basis of preliminary calculations in which the distance between grid points was
progressively reduced by 30 per cent from one simulation to another. When a
further decrease led to a change in the average Nusselt numbers smaller that 1
per cent, the results were considered to be grid-independent. In the final
simulations we used a mesh consisting of 31 £ 31 £ 33 ¼ 31713 nodal points
and 28800 elements. Time-step independence was also established on the basis
of preliminary calculations in which the dimensionless time step �uDq=L was
progressively reduced by 30 per cent from one simulation to another. When a
further decrease led to a change in the average Nusselt numbers smaller that
1 per cent, the results were considered to be independent on the time step. In the
final simulations we used a dimensionless time step equal to 0.01 with a Crank-
Nicolson scheme for the transient solutions, and a dimensionless values of the
time step equal to 0.02 with a fully implicit scheme for the steady-state
solutions.

The reliability of the procedure described in the previous section had already
been demonstrated by Nonino and Croce (1997), and Nonino and Comini (1998).
However, the accuracy has been assessed once again imposing the symmetric
periodicity conditions on a portion of a smooth square channel. In this way we
obtained Nu0 ¼ 2:972 and ðf ReÞ0 ¼ 14:25 for the fully developed flow and
thermal fields, respectively. As expected, these results are independent of the
Reynolds and Prandtl number and agree to the 3rd figure with the analytical
solutions Nu0 ¼ 2:976 and ðf ReÞ0 ¼ 14:227; reported by Shah and London
(1978, p. 200).

The calculations for all rib-roughened channels have been carried out for a
Prandtl number Pr ¼ 0:7; and a range of Reynolds numbers from Re ¼ 100 to
upper values in the regime which precedes the transition to turbulence. Above
a critical value of the Reynolds number Recr, the flow character changes first
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from stationary to time-periodic, and then to nearly chaotic. In time-periodic
and nearly chaotic situations, overall parameters were further averaged over a
period or a suitable time interval, respectively, yielding single representative
values. This way we obtained

kwl ¼
1

Q

Z qþQ

q

fðqÞdq ð26Þ

where w ¼ f ; Nu or v. To lighten the notation, the symbol kl has been omitted
in the following, except when referred to the time averaged velocity vectors.

As pointed out in the Introduction, the aim of the paper is to investigate the
influence of the rib geometry, and the effect of self-sustained flow oscillations
that arise for Re . Recr before the flow becomes turbulent. These
investigations are illustrated below.

Influence of rib geometries
The influence of rib geometries is best established with reference to stationary
flows in the sub-critical range. At Re ¼ 300; we have such flows in all the rib-
roughened channels considered. The corresponding fields are illustrated in
Figure 2 by plotting trajectories and velocity vectors, and in Figure 3 by
plotting pressure contours on two adjacent walls. As can be seen from Figure 2,
the staggered angled ribs induce two longitudinal counter-rotating vortices,
which move the fluid from the walls to the centre of the channels. On the
contrary, the non-staggered angled ribs induce only one longitudinal vortex
and, practically, no mixing between near-wall and centre flows. Finally,
transverse ribs induce transverse vortices which are not much effective as
mixing promoters. Thus it can be expected that only the staggered angled ribs
have a beneficial effect on the heat transfer rate, even if all rib configurations
increase pressure losses.

Influence of flow oscillations
The influence of flow oscillations can be best established with reference to the
time dependent velocity fields that arise above the critical value of the
Reynolds number. Let us consider, for example, the vertical mid-plane y=W ¼
0:5 in a square channel with staggered, 458 angled ribs. At Re ¼ 675 (a higher
than critical value) the flow is time-periodic, and the projection of the
differences v 2 kvl between instantaneous and time-averaged velocity vectors
behave as shown in Figure 4. It appears that the upper and lower channel walls
are washed by transverse vortices that detach periodically from the ribs and
move downstream. This process transports fluid particles from the walls to the
core and downstream, thus enhancing the energy transfer. Similar results
would have been obtained for all the rib geometries, above the critical value of
the Reynolds number.
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The value of the critical Reynolds number depends on the geometrical
configuration. Its direct calculation is an almost impossible task because the
transients become longer and longer as one approaches the critical point, and
the amplitude of the oscillations tends to zero. The results of Table I are
slightly above the critical values and have been found by a trial-and-error
procedure.

Transition to turbulence
When the Reynolds number increases above the critical value, the flow starts a
transition towards the turbulent regime. In the literature, two routes from the

Figure 2.
Trajectories and
transverse velocity
vectors at Re ¼ 300 in
square channels with 908,
608 and 458 angled ribs
(one-sided ribs on the
left; staggered ribs on the
right)
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time-periodic to the turbulent regime have been classified and investigated
extensively. The route described by Ruelle and Takens (1971) involves two
main bifurcations. The first bifurcation leads to a semi-periodic regime
characterized by the appearance of a second dominant frequency,
incommensurate with respect to the existing one. When a further bifurcation
brings about a third incommensurate frequency, the flow becomes turbulent.
The route described by Feigenbaun (1978) involves a series of successive
frequency halving bifurcations or, according to Libchaber and Maurer (1981),
alternative series of one-third or, even, one-fifth frequency reductions. In the

Figure 3.
Pressure contours at

Re ¼ 300 on two walls of
square channels with 908,

608 and 458 angled ribs
(one-sided ribs on the

left; staggered ribs on the
right)
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Fourier space, these inverse cascades yield first a broadening of the spectrum
and, finally, a transition to chaos.

In the flows investigated here, the Feigenbaun scenario seems to prevail,
even if it must be pointed out that, sometimes, flow transitions cannot be easily
detected. In transverse ribbed channels, for example, successive bifurcations
arise at quite closely spaced Reynolds numbers. On the contrary, in channels
with angled ribs transitions to turbulence take place in a fairly large interval of

Rib angle One-sided ribs Staggered ribs

908 . 1100 . 700
608 860 615
458 1080 675

Table I.
Values of the critical
Reynolds number in
rib-roughened,
square channels

Figure 4.
Differences between
instantaneous and time-
averaged velocity
vectors in the vertical
mid-plane y=W ¼ 0:5 of
a 458 angled square
channel, at Re ¼ 675 and
Q/4 intervals
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Reynolds numbers. For the sake of brevity, in the following we will consider
only the square channel with 458 angled, staggered ribs. The behaviour of the
flow in this channel is illustrated in Figure 5. In this figure we consider first the
time variations of the space-averaged Nusselt number, then the corresponding
power density spectra and, finally, the (u, w ) phase trajectories at a reference
point in the centre of the inflow section. At Re ¼ 675; both the Nu vs. q
representation and the phase diagram (a closed curve) indicate that the time
behaviour is periodic. Correspondingly, the fast Fourier transform shows a
dominant frequency, whose dimensionless value is St ø 1:49 when expressed
in terms of the Strouhal number

St ¼
H

Q �u
ð27Þ

At Re ¼ 700 and Re ¼ 725 the flow is quasi-periodic, as can be inferred from
the Nu vs. q representation. Correspondingly the phase diagrams become
“almost closed” curves, and the fast Fourier transforms show much broader
spectra with respect to the Re ¼ 675 case. The ratio between the dominant
frequencies is about one fifth, both in the Re ¼ 700 vs. Re ¼ 675 case and in the
Re ¼ 725 vs. Re ¼ 675 case. A further increase in the Reynolds number to
Re ¼ 775 leads to a quasi-chaotic behaviour, as can be inferred from the Nu vs.
q representation. Correspondingly, the phase diagram does not exhibit any
repetitive pattern, and the Fourier transform shows a quite distributed
spectrum over a broad frequency range.

Quantitative comparisons
The momentum and heat transfer characteristics of ribbed channels can be
described in terms of apparent friction factors multiplied by the Reynolds
number ( f Re parameter) and overall Nusselt numbers (Nu). The f Re and Nu
values pertaining to the ribbed channels are divided by the corresponding
values pertaining to the fully developed flow and thermal fields in a smooth
straight channel. These quantitative findings are reported in Figure 6 for
different Reynolds numbers up to the critical value.

In boundary layer flows, the momentum and heat transfer characteristics are
related by the Chilton-Colburn analogy, which can be written in the form

1 ¼
j

f
¼

Nu

Re Pr1=3

1

f
¼ const ð28Þ

where 1 can be interpreted as a goodness factor. This analogy is strictly valid
for boundary layer flows over a flat plate. However, by adjusting the value of
the constant, it can be applied with good results to any non-recirculating flow.
For example, in the case of Pr ¼ 0:7 and fully developed laminar flow and
thermal fields in a straight square channel, we obtain
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Figure 5.
Square channel with
staggered 458 angled
ribs: time behaviour of
the space-averaged
Nusselt number (top),
corresponding power
density spectra (centre)
and (u, w ) phase
trajectories (bottom),
at (a) Re ¼ 675;
(b) Re ¼ 700;
(c) Re ¼ 725 and
(d) Re ¼ 775:
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Figure 5.
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10 ¼
j

f

� �
0

¼
Nu0

ð f ReÞ0 Pr1=3
¼ 0:236 ð29Þ

In recirculating flows, such as the ones occurring in ribbed channels, the
Chilton-Colburn analogy cannot be expected to hold good. However, the ratio
1/10 can still be used as a goodness factor in performance comparisons such as
the ones reported in Figure 7.

Figure 6.
Apparent friction factors
(triangles) and overall
Nusselt numbers
(squares) in ribbed
square channels,
normalized with
corresponding values for
smooth square ducts
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These comparisons are in good agreement with previous considerations.
In fact, the 458 angled, staggered ribs perfom better than the other staggered
ribs.

Similarly, the staggered ribs perform better than the non-staggered
ones.

Conclusions
Pressure drop and heat transfer characteristics in rib-roughened, square
channels have been investigated for different values of the Reynolds number.
In all the situations considered, the f Re parameter of the ribbed channels is
much higher than the one corresponding to the smooth channel.

On the contrary, a significant improvement of the average Nusselt number
can be obtained only for angled ribs in anti-periodic configurations and
relatively high values of the Reynolds number. This improvement can be
attributed to the formation of longitudinal vortices that mix near wall and
centre flows. The non-staggered, angled ribs are not effective since they induce
only one longitudinal vortex and, practically, no mixing between near-wall and
centre flows.

Finally, transverse ribs induce transverse vortices that do not promote any
mixing, at least for Reynolds number below the critical value corresponding to
the onset of self-sustained oscillations. When the flow and temperature fields
become unsteady, a new convective heat transfer mechanism appears: the
periodic washing of the upper and lower channel walls by travelling transverse
vortices. This process transports fluid particles from the walls to the core and
downstream, enhancing the energy transfer.

Figure 7.
Goodness factors in

ribbed square channels,
normalized with

corresponding values for
smooth square ducts
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